Spectral methods using Legendre wavelets for nonlinear Klein\Sine-Gordon equations

نویسندگان

  • Fukang Yin
  • Tian Tian
  • Junqiang Song
  • Min Zhu
چکیده

Klein/Sine-Gordon equations are very important in that they can accurately model many essential physical phenomena. In this paper, we propose a new spectral method using Legendre wavelets as basis for numerical solution of Klein\Sine-Gordon Equations. Due to the good properties of wavelets basis, the proposed method can obtain good spatial and spectral resolution. Moreover, the presented method can save more memory and computation time benefit from save more computation time benefit from the hierarchical scale structure of Legendre wavelets. 1D and 2D examples are included to demonstrate the validity and applicability of the new technique. Numerical results show the exponential convergence property and error characteristics of presented method. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

متن کامل

A numerical technique for solving a class of 2D variational problems using Legendre spectral method

An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...

متن کامل

Legendre wavelet method for solving Hammerstein integral equations of the second kind

An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...

متن کامل

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2015